These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Self-assembled nano-micelles of lactoferrin peptides: Structure, physicochemical properties, and application for encapsulating and delivering curcumin.
    Author: Wang Y, Jiang W, Jiang Y, Julian McClements D, Liu F, Liu X.
    Journal: Food Chem; 2022 Sep 01; 387():132790. PubMed ID: 35421649.
    Abstract:
    Food-derived protein hydrolysate exhibits good bioactivity, compatibility, and low toxicity, etc. However, the information on protein hydrolysate-based micelles and their application as carriers for hydrophobic bioactive compounds is limited. In this study, an enzymatic partially hydrolyzed lactoferrin hydrolysate nano-micelle with the size within 50 nm was constructed, and its formation mechanism and delivery characteristics for curcumin (Cur) were studied. The results demonstrated that Cur was loaded into the micelles through hydrophobic interaction, and the encapsulation rate of Cur by nano-micelles was (93.44 ± 0.01)%. In addition, the nano-micelle system demonstrated excellent thermal stability, dilution stability, and storage stability. The in vitro simulated digestion proved that self-assembled nano-micelles could improve the transformation rate and bioaccessibility of Cur. This study revealed that lactoferrin hydrolysate self-assembled nano-micelle is a promising delivery system for hydrophobic bioactive compounds.
    [Abstract] [Full Text] [Related] [New Search]