These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evaluation of magnetic resonance imaging-based radiomics characteristics for differentiation of benign and malignant peripheral nerve sheath tumors in neurofibromatosis type 1. Author: Ristow I, Madesta F, Well L, Shenas F, Wright F, Molwitz I, Farschtschi S, Bannas P, Adam G, Mautner VF, Werner R, Salamon J. Journal: Neuro Oncol; 2022 Oct 03; 24(10):1790-1798. PubMed ID: 35426432. Abstract: BACKGROUND: Patients with neurofibromatosis type 1 (NF1) develop benign (BPNST), premalignant atypical (ANF), and malignant (MPNST) peripheral nerve sheath tumors. Radiological differentiation of these entities is challenging. Therefore, we aimed to evaluate the value of a magnetic resonance imaging (MRI)-based radiomics machine-learning (ML) classifier for differentiation of these three entities of internal peripheral nerve sheath tumors in NF1 patients. METHODS: MRI was performed at 3T in 36 NF1 patients (20 male; age: 31 ± 11 years). Segmentation of 117 BPNSTs, 17 MPNSTs, and 8 ANFs was manually performed using T2w spectral attenuated inversion recovery sequences. One hundred seven features per lesion were extracted using PyRadiomics and applied for BPNST versus MPNST differentiation. A 5-feature radiomics signature was defined based on the most important features and tested for signature-based BPNST versus MPNST classification (random forest [RF] classification, leave-one-patient-out evaluation). In a second step, signature feature expressions for BPNSTs, ANFs, and MPNSTs were evaluated for radiomics-based classification for these three entities. RESULTS: The mean area under the receiver operator characteristic curve (AUC) for the radiomics-based BPNST versus MPNST differentiation was 0.94, corresponding to correct classification of on average 16/17 MPNSTs and 114/117 BPNSTs (sensitivity: 94%, specificity: 97%). Exploratory analysis with the eight ANFs revealed intermediate radiomic feature characteristics in-between BPNST and MPNST tumor feature expression. CONCLUSION: In this proof-of-principle study, ML using MRI-based radiomics characteristics allows sensitive and specific differentiation of BPNSTs and MPNSTs in NF1 patients. Feature expression of premalignant atypical tumors was distributed in-between benign and malignant tumor feature expressions, which illustrates biological plausibility of the considered radiomics characteristics.[Abstract] [Full Text] [Related] [New Search]