These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Is the role of aerobic methanotrophs underestimated in methane oxidation under hypoxic conditions? Author: Cheng C, He Q, Zhang J, Chen B, Pavlostathis SG. Journal: Sci Total Environ; 2022 Aug 10; 833():155244. PubMed ID: 35427622. Abstract: Microbial methane oxidation is the major biological methane (CH4) sink in the carbon cycle. Methanotrophs can use various electron acceptors in addition to oxygen; understanding the role and contribution of methanotrophs is thus an important topic. However, anaerobic oxidation of methane (AOM) mediated by methanotrophs is poorly explored and understood. This article summarizes the role aerobic methanotrophic bacteria play in AOM. Though AOM was originally considered to be mediated by anaerobic methanotrophic archaea, intra-aerobic methane-oxidizing bacteria (Candidatus Methylomirabilis oxyfera) appear to be involved in nitrite-dependent AOM. In addition, aerobic methanotrophs of the Methylomonadaceae and Methylocystaceae, are more versatile than previously assumed and can also be involved in nitrate/nitrite- or mineral oxide-dependent AOM under oxygen-limitation. Furthermore, the simultaneous reduction of nitrous oxide and oxidation of CH4 may be another new metabolic trait of aerobic methanotrophs. We discuss the potential metabolic pathways of CH4 oxidation under hypoxic conditions. It is of great ecological importance not only for the quantification of CH4 oxidation and emissions, but also for the definition of a new function of aerobic methanotrophs in anaerobic/hypoxic environments.[Abstract] [Full Text] [Related] [New Search]