These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rapid and simultaneous detection of multiple illegal additives in feed and food by SERS with reusable Cu2O-Ag/AF-C3N4 substrate.
    Author: Liu E, Fan X, Yang Z, Han L, Li S, Huang Y, Liao K, Cai L.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2022 Aug 05; 276():121229. PubMed ID: 35427922.
    Abstract:
    Illegal additives can bring the economic benefit, resulting in the continuous irregularities in the use of illegal additives. In this study, a method for rapid, sensitive, and simultaneous detection of multiple illegal additives including enrofloxacin, malachite green, nitrofurazone, and Sudan Ⅰ in feed and food samples by surface-enhanced Raman spectroscopy (SERS) with Cu2O-Ag/AF-C3N4 composite substrate was developed. A Cu2O-Ag/AF-C3N4 composite substrate was prepared by reacting Cu2O modified by AF-C3N4 nanosheets with AgNO3 solution. The substrate has a limit of detection (LOD) of 1.29 × 10-6 mg/L, a good linear relationship of between 10-6 and 10-2 mg/L, and an R2 value of 0.95 for Rhodamine B detection. Furthermore, the substrate showed high uniformity and reproducibility, with relative standard deviations (RSD) of 6.74% and 4.85%, respectively. Adding AF-C3N4 nanosheets not only increased the enhancement effect of the substrate, which was 4.4 times of that before addition, but also endowed it with good self-cleaning characteristics owing to its excellent photocatalytic activity. The substrate can be reused, with over 80% of the original Raman signal strength remaining after four repeat uses. The SERS based on the above substrate was used to detect the illegal additives, the LOD of enrofloxacin, malachite green, nitrofurazone, and Sudan Ⅰ can reach 4.67 × 10-4 mg/L, 2.57 × 10-5 mg/L, 5.7 × 10-7 mg/L and 6.92 × 10-5 mg/L. The results reveal that this substrate has great application potential in feed and food safety.
    [Abstract] [Full Text] [Related] [New Search]