These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Heterologous Expression of LiSEP3 from Oriental Lilium Hybrid 'Sorbonne' Promotes the Flowering of Arabidopsis thaliana L.
    Author: Cao L, Liu D, Jiang F, Wang B, Wu Y, Che D, Fan J.
    Journal: Mol Biotechnol; 2022 Oct; 64(10):1120-1129. PubMed ID: 35435590.
    Abstract:
    The MADS-box gene family has multiple molecular and biological functions in plants. Here, the LiSEP3 gene of the MADS-box gene family of' 'Sorbonne' was obtained by homologous cloning using the petals of the flowering stage of Lilium Oriental Hybrid 'Sorbonne.' The ORF full-length sequence is 729 bp, encoding 242 amino acids. Bioinformatics analysis showed that the relative molecular weight of the LiSEP3 protein is 27.67 kD and the isoelectric point (pI) is 9.16. The prediction result of the gene positioning is transcription in its nucleus. Homologous alignment of amino acid sequences showed that the protein not only had typical MADS-box and K-box domains, but also contained two short and relatively conservative SEP motifs. The phylogenetic tree showed that the amino acid sequence encoded by the LiSEP3 gene had the closest relationship with SEP3 in monocotyledon plants such as Apostasia odorata. The results of real-time PCR showed that LiSEP3 gene was mainly expressed in petal. During flower development, the expression level of the LiSEP3 gene showed an overall trend of initially increasing and then decreasing. The flowering time of LiSEP3 transgenic Arabidopsis thaliana L. plants was earlier than that of wild-type Arabidopsis thaliana L. plants, compared with wild type, the number of rosette leaves is less. In the transgenic plants, the expression of flowering-associated AtSPL5 and AtGI genes was up-regulated, while the expression of AtSVP and AtFRI genes that inhibit flowering was down-regulated, which was consistent with the statistical results of the flowering time of LiSEP3 transgenic plants. Our results illustrate that the heterologous expression of SEP3 functional genes in the MADS-box family promoted the flowering period of transgenic plants of this hybrid. This research provides a theoretical basis for improving the flowering period of ornamental plants through plant genetic engineering technology and enhancing their economic and social values.
    [Abstract] [Full Text] [Related] [New Search]