These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modeling the dynamic growth and branching of actin filaments.
    Author: Xu W, Liu X, Liu X.
    Journal: Soft Matter; 2022 May 18; 18(19):3649-3659. PubMed ID: 35438124.
    Abstract:
    As an essential component of the cytoskeleton, actin filaments play a key role in a variety of cellular physiological activities. To better understand the function of actin filaments, which are a special kind of polymer chain, researchers have started to focus on the Brownian dynamics of polymers. Currently, to study the dynamics of polymers, classical explicit bead-spring models and finite-element methods (FEMs) have both been broadly used. However, compared to bead-spring models, FEMs can address the mechanical properties of actin filaments and actin networks with more detail and better accuracy. However, current FEMs do not consider the dynamic assembly of actin into an actin filament network. Here, we extend the traditional FEM and present a new framework of the FEM based on the co-rotational grid method, which allows us to simulate the dynamic growth and branching of actin filaments. Several examples are studied. The proposed numerical model is capable of capturing the dynamic assembly of actin filaments.
    [Abstract] [Full Text] [Related] [New Search]