These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Purification and characterization of a novel metalloendopeptidase from Streptococcus cremoris H61. A metalloendopeptidase that recognizes the size of its substrate. Author: Yan TR, Azuma N, Kaminogawa S, Yamauchi K. Journal: Eur J Biochem; 1987 Mar 02; 163(2):259-65. PubMed ID: 3545830. Abstract: An endopeptidase (LEP-II), which has a unique substrate specificity, was purified to homogeneity by conventional chromatographic techniques from Streptococcus cremoris H61. The enzyme was a metalloendopeptidase since it was inhibited by EDTA and 1,10-phenanthroline; the metal-depleted enzyme could be fully reactivated by micromolar levels of Zn2+ and was not inhibited by specific inhibitors for serine or thiol protease. The molecular mass of the enzyme was estimated to be 80 kDa by Sephacryl S-300 gel filtration and high-performance liquid chromatography with a TSK-G3000SW column. The enzyme consisted of two identical subunits and the N-terminal sequence of LEP-II was determined up to the 19th residue. Although the enzyme had a broad substrate specificity it specifically hydrolyzed the peptide bonds involving the amino groups of hydrophobic amino acid residues. Various small polypeptides, such as alpha s1-CN(f1-23), alpha s1-CN(f91-100), oxidized insulin B chain, glucagon and some biologically active peptides were hydrolyzed. However, a variety of larger polypeptides or proteins, such as alpha s1-CN(f1-54), alpha s1-CN(f61-123), alpha s1-CN(f136-196), alpha s1-casein, beta-casein, and kappa-casein were not hydrolyzed. LEP-II recognized the size of its substrates, which were limited below a molecular mass of about 3.5 kDa.[Abstract] [Full Text] [Related] [New Search]