These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Homochiral iron-based γ-cyclodextrin metal-organic framework for stereoisomer separation in the open tubular capillary electrochromatography.
    Author: Wang C, Zhu D, Zhang J, Du Y.
    Journal: J Pharm Biomed Anal; 2022 Jun 05; 215():114777. PubMed ID: 35462287.
    Abstract:
    Metal organic frameworks (MOFs), as a novel separation mediums, have in recent years attracted wide consideration in capillary electrochromatography (CEC). However, the instability of frameworks limited the application of the MOF-based chiral separation capillary. Herein, Iron-based γ-cyclodextrin metal-organic framework (Fe-CD-MOF) with mesoporous was developed as the chiral stationary phase in open tubular capillary electrochromatography column (OT-CEC) for the stereoisomer separation of fourteen chiral drugs and one chiral alcohol. The capillary column with MOF coating exhibited the best performance (resolution value: 17.07) for anisodamine in any MOF-based capillary column that has never been reported. Moreover, the effect of pH, buffer concentration, and methanol content has been investigated. The novel coated capillary was also applied for the quantitative analysis of a real sample. The Fe-CD-MOF coated capillary showed outstanding repeatability and stability, with the satisfactory relative standard deviations (RSDs) for intra-day, inter-day, and column-to-column. Finally, the enantioseparation mechanism of the Fe-CD-MOF coated capillary was evaluated by adsorption kinetic experiments. In summary, this work indicated the novel and renewable Fe-CD-MOF was a potential chiral stationary phase in CEC chiral separation.
    [Abstract] [Full Text] [Related] [New Search]