These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Escherichia coli S-adenosylmethionine decarboxylase. Subunit structure, reductive amination, and NH2-terminal sequences.
    Author: Anton DL, Kutny R.
    Journal: J Biol Chem; 1987 Feb 25; 262(6):2817-22. PubMed ID: 3546296.
    Abstract:
    S-Adenosylmethionine decarboxylase is one of a small group of enzymes that use a pyruvoyl residue as a cofactor. Histidine decarboxylase from Lactobacillus 30a, the best studied pyruvoyl-containing enzyme, has an (alpha beta)6 subunit structure with the pyruvoyl moiety linked through an amide bond to the NH2-terminal of the larger alpha subunit (Recsei, P. A., Huynh, Q. K., and Snell, E. E. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 973-977). To examine potential structural analogies between the two enzymes, we have isolated and partially characterized S-adenosylmethionine decarboxylase. The purified enzyme comprises equimolar amounts of two subunits of Mr = 14,000 and 19,000 (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and has a native molecular weight of 136,000 (by gel filtration). Approximately 4 mol of [methyl-3H] adenosylmethionine are incorporated per mol of enzyme (Mr = 136,000) when the enzyme is inactivated with this substrate and NaCNBH3. These data suggest an (alpha beta)4 structure with 1 pyruvoyl residue for each alpha beta pair. The two subunits have been separated by reversed-phase high performance liquid chromatography after reduction and carboxymethylation. The smaller subunit (beta) has a free amino terminus. The amino terminus of the larger subunit (alpha) appears to be blocked by a pyruvoyl group; this subunit can be sequenced only after this group is converted to an alanyl residue by reduction with sodium cyanoborohydride in the presence of ammonium acetate. This work suggests that S-adenosylmethionine decarboxylase is structurally much more similar to histidine decarboxylase than previously thought.
    [Abstract] [Full Text] [Related] [New Search]