These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Purification and properties of a bacteriophage-induced endo-N-acetylneuraminidase specific for poly-alpha-2,8-sialosyl carbohydrate units.
    Author: Hallenbeck PC, Vimr ER, Yu F, Bassler B, Troy FA.
    Journal: J Biol Chem; 1987 Mar 15; 262(8):3553-61. PubMed ID: 3546309.
    Abstract:
    The soluble form of a bacteriophage-induced endo-N-acetylneuraminidase (Endo-N) specific for hydrolyzing oligo- or poly-alpha-2,8-linked sialosyl units in sources as disparate as bacterial and neural membrane glycoconjugates was purified approximately 10,000-fold and characterized. The enzyme appears homogenous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and has a subunit Mr 105,000. This corresponds to one of the higher Mr phage proteins which comprises 7.5% (by weight) of the total phage protein. The holoenzyme is active at neutral pH and has a Mr by gel filtration of 328,000, suggesting that the active enzyme is a trimer. Endo-N requires a minimum of 5 sialyl residues (DP5, where DP represents degree of polymerization) for activity. The limit digest products from the alpha-2,8-linked polysialic acid capsule of Escherichia coli K1 are DP4 with some DP3 and DP1,2. DP2-4 do not appear to inhibit depolymerization of polysialic acid. Endo-N digestion of the polysialosyl moiety on neural cell adhesion molecules yields sialyl oligomers with DP3 and DP4. The presence of a terminal sialitol changes both the distribution of limit digestion products and the apparent minimum substrate size. Higher Mr alpha-2,8-linked sialyl polymers (approximately DP200) are better substrates (Km 50-70 microM) than sialyl oligomers of approximately DP10-20 (Km 1.2 mM). Endo-N activity is inhibited by DNA and several other poly-anions tested. An examination of the distribution of intermediate products shows that Endo-N binds and cleaves at random sites on the polysialosyl chains, in contrast to initiating cleavage at one end and depolymerizing processively. Endo-N can serve as a specific molecular probe to detect and selectively modify poly-alpha-2,8-sialosyl carbohydrate units which have been implicated in bacterial meningitis and neural cell adhesion.
    [Abstract] [Full Text] [Related] [New Search]