These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Design, synthesis and biological evaluation of hydrogen sulfide-releasing isochroman-4-one derivatives as new antihypertensive agent candidates. Author: Wu H, Li X, He C, Liu Y, Wang C, Yang X, Ma F, Liu J, Xu J. Journal: Bioorg Med Chem; 2022 Jun 15; 64():116776. PubMed ID: 35483137. Abstract: Cardiovascular diseases are increasingly threating the global human health, hypertension is the most important risk factor for cardiovascular and cerebrovascular diseases. To improve the antihypertensive activity and cardiovascular protective effect of natural product (±)-7,8-dihydroxy-3-methyl-isochroman-4-one [(±)-XJP], a series of novel H2S-releasing isochroman-4-one derivatives were designed and synthesized by coupling hydrogen sulfide (H2S)-releasing donors with the analogs of (±)-XJP. Further, the H2S-releasing assay indicated that some target compounds showed excellent H2S generating ability. Moreover, these novel hybrids exhibited moderate to good in vitro vasodilation efficacy. Among them, the most potent compound exhibited potent in vivo antihypertensive activity with the maximum antihypertensive amplitude about 27%, which was more potent than that of the lead compound (±)-XJP. These results suggested that the hybridization of H2S-donors and (±)-XJP analogs may provide a promising approach for the discovery of novel antihypertensive agents.[Abstract] [Full Text] [Related] [New Search]