These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Redox-Responsive Breakup of a Nucleic Acids@CoOOH Nanocomplex Triggering Cascade Recycling Amplification for Sensitive Sensing of Alkaline Phosphatase. Author: Li S, Dong Q, Yu Y, Lin B, Zhang L, Guo M, Cao Y, Wang Y. Journal: Anal Chem; 2022 May 10; 94(18):6711-6718. PubMed ID: 35486137. Abstract: Alkaline phosphatase (ALP), an essential hydrolase with crucial roles in living organisms, has widely been regarded as a biomarker for various human diseases in clinical diagnoses. Herein, taking advantage of cobalt oxyhydroxide (CoOOH) nanoflakes and nonenzymatic cascade recycling amplification (CRA), a highly sensitive and label-free fluorescence biosensing strategy for the determination of ALP activity is introduced. In our design, ALP can promote the dephosphorylation of l-ascorbic acid 2-phosphate (AAP) to reduce ascorbic acid (AA), which is then able to decompose CoOOH in a nucleic acids@CoOOH nanocomplex into Co2+ cofactors. Further, enzyme-free CRA was rapidly initiated by integrating DNAzyme recycling amplification and catalytic hairpin assembly, resulting in the generation of an abundance of G-quadruplex structure-contained DNA duplexes. In the presence of thioflavin T (ThT), analytical target ALP was converted in an amplified and activatable fluorescence signal. The experimental results show that this method can be applied for the quantitative analysis of ALP activity with a low detection limit of 0.027 mU/mL. Moreover, this developed biosensing approach exhibits excellent specificity, and the evaluation of ALP activity in the complex human serum samples was successfully realized, indicating that it can afford a reliable, robust, and cost-effective nanoplatform for an ALP-based clinical diagnosis and for biomedical research.[Abstract] [Full Text] [Related] [New Search]