These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The PV2 cluster of parvalbumin neurons in the murine periaqueductal gray: connections and gene expression. Author: Leemann S, Babalian A, Girard F, Davis F, Celio MR. Journal: Brain Struct Funct; 2022 Jul; 227(6):2049-2072. PubMed ID: 35486186. Abstract: The PV2 (Celio 1990), a cluster of parvalbumin-positive neurons located in the ventromedial region of the distal periaqueductal gray (PAG) has not been previously described as its own entity, leading us to study its extent, connections, and gene expression. It is an oval, bilateral, elongated cluster composed of approximately 475 parvalbumin-expressing neurons in a single mouse hemisphere. In its anterior portion it impinges upon the paratrochlear nucleus (Par4) and in its distal portion it is harbored in the posterodorsal raphe nucleus (PDR). It is known to receive inputs from the orbitofrontal cortex and from the parvafox nucleus in the ventrolateral hypothalamus. Using anterograde tracing methods in parvalbumin-Cre mice, the main projections of the PV2 cluster innervate the supraoculomotor periaqueductal gray (Su3) of the PAG, the parvafox nucleus of the lateral hypothalamus, the gemini nuclei of the posterior hypothalamus, the septal regions, and the diagonal band in the forebrain, as well as various nuclei within the reticular formation in the midbrain and brainstem. Within the brainstem, projections were discrete, but involved areas implicated in autonomic control. The PV2 cluster expressed various peptides and receptors, including the receptor for Adcyap1, a peptide secreted by one of its main afferences, namely, the parvafox nucleus. The expression of GAD1 and GAD2 in the region of the PV2, the presence of Vgat-1 in a subpopulation of PV2-neurons as well as the coexistence of GAD67 immunoreactivity with parvalbumin in terminal endings indicates the inhibitory nature of a subpopulation of PV2-neurons. The PV2 cluster may be part of a feedback controlling the activity of the hypothalamic parvafox and the Su3 nuclei in the periaqueductal gray.[Abstract] [Full Text] [Related] [New Search]