These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Epitaxial synthesis of Ni-MoS2/Ti3C2T x MXene heterostructures for hydrodesulfurization. Author: Vinoba M, Navvamani R, Al-Sheeha H. Journal: RSC Adv; 2020 Mar 24; 10(21):12308-12317. PubMed ID: 35497617. Abstract: Hierarchical structures of 2D layered Ti3C2T x MXene hold potential for a range of applications. In this study, catalysts comprising few-layered MoS2 with Ti3C2T x have been formulated for hydrodesulfurization (HDS). The support Ti3C2T x was derived from MAX phases (Ti3AlC2) via a liquid-phase exfoliation process, while MoS2 was obtained from synthesized aqueous ammonium tetrathiomolybdate (ATM). Furthermore, a series of catalysts with different architectures was synthesized by confinement of ATM and/or the promoter Ni in Ti3C2T x at different mole ratios, through a thermal conversion process. The synthesized MoS2/Ti3C2T x and Ni-MoS2/Ti3C2T x catalysts were characterized using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDS), high-resolution transmission electron microscopy (HRTEM), and temperature-programmed reduction (TPR) measurements. The number of MoS2 layers formed on the Ti3C2T x support was calculated using Raman spectroscopy. The heterostructured few-layered MoS2/Ti3C2T x catalysts were applied in sulfur removal efficiency experiments involving thiophene. The active MoS2 sites confined by the Ti3C2T x enhanced hydrogen activation by proton saturation, and the electron charge stabilized the sulfur atom to facilitate hydrogenation reactions, leading to predominant formation of C4 hydrocarbons. The Ni-MoS2/Ti3C2T x showed the best activity at a promoter molar ratio of 0.3 when compared to the other catalysts. In particular, it is evident from the results that ATM and Ti3C2T x are potential materials for the in situ fabrication of hierarchical few-layered MoS2/Ti3C2T x catalysts for enhancing hydrodesulfurization activity in clean fuel production.[Abstract] [Full Text] [Related] [New Search]