These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Diagnostic Performance of CT-Derived Fractional Flow Reserve in Australian Patients Referred for Invasive Coronary Angiography.
    Author: Chua A, Ihdayhid AR, Linde JJ, Sørgaard M, Cameron JD, Seneviratne SK, Ko BS.
    Journal: Heart Lung Circ; 2022 Aug; 31(8):1102-1109. PubMed ID: 35501246.
    Abstract:
    BACKGROUND: Non-invasive computed tomography (CT)-derived fractional flow reserve (FFRCT) is computed from standard coronary CT angiography (CTA) datasets and provides accurate vessel-specific ischaemia assessment of coronary artery disease (CAD). To date, the technique and its diagnostic performance has not been verified in the Australian clinical context. The aim of this study was to describe and compare the diagnostic performance of FFRCT and CTA for the detection of vessel-specific ischaemia as determined by invasive fractional flow reserve (FFR) in the Australian patient population. METHODS: One-hundred-and-nine patients (219 vessels) referred for clinically mandated invasive angiography were retrospectively assessed. Each patient underwent research mandated CTA and FFRCT within 3 months of invasive angiography and invasive FFR assessment. Independent core laboratory assessments were made to determine visual CTA stenosis, FFRCT and invasive FFR values. FFRCT values were matched with the corresponding invasive FFR measurement taken at the given wire position. Visual CTA stenosis ≥50%, FFRCT values ≤0.8 and invasive FFR values ≤0.8 were considered significant for ischaemia. RESULTS: Per vessel accuracy, sensitivity, specificity, positive predictive value and negative predictive value of FFRCT were 80.4%, 80.0%, 80.6%, 64.9% and 90.0% respectively. Corresponding values for CTA were 75.1%, 87.1%, 69.2%, 58.1% and 91.7% respectively. In receiver operating characteristic curve analysis, FFRCT demonstrated superior area under the curve (AUC) compared with CTA in both per vessel (0.87 vs 0.77, p=0.004) and per patient analysis (0.86 vs 0.74, p=0.011). Per vessel AUC of combined CTA and FFRCT was superior to CTA alone (0.89 vs 0.77, p<0.0001). CONCLUSION: In this cohort of Australian patients, the diagnostic performance of FFRCT was found to be comparable to existing international literature, with demonstrated improvement in performance compared with CTA alone for the detection of vessel-specific ischaemia.
    [Abstract] [Full Text] [Related] [New Search]