These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Iron-biochar production from oily sludge pyrolysis and its application for organic dyes removal. Author: Liu Y, Jiang Z, Fu J, Ao W, Ali Siyal A, Zhou C, Liu C, Dai J, Yu M, Zhang Y, Jin Y, Yuan Y, Zhang C. Journal: Chemosphere; 2022 Aug; 301():134803. PubMed ID: 35508264. Abstract: In this study, a single-step pyrolysis approach was developed to directly convert oily sludge (OS) with high iron content into a magnetic iron-char catalyst for organic dyes removal. Magnetic iron-char catalysts were employed to degrade crystal violet (CV), methylene blue (MB), and sunset yellow (SY). The OC800 iron-char catalyst prepared from OS was not only rich in iron (mainly stable Fe3O4), but also showed favorable pore structures. Effects of operation parameters like temperature, H2O2 dosage, and pH on dye removal based on Fenton degradation were examined. In OC800 Fenton system (0.5 mL H2O2, 500 mg/L dye concentration, and pH = 2 in 50 mL solution), the maximum dye removal capacities of SY, CV, and MB were 83.61, 639.19, and 414.25 mg/g, respectively. In dyes degradation experiments, the prepared catalyst could be reused (more than 3 successive cycles) due to higher stability and less leaching of iron. One-step pyrolysis of OS with high iron content thereby represents a promising approach to transform sludge waste to functional biochar that removes hazardous dyes.[Abstract] [Full Text] [Related] [New Search]