These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High thermal conductivity driven by the unusual phonon relaxation time platform in 2D monolayer boron arsenide. Author: Hu Y, Li D, Yin Y, Li S, Zhou H, Zhang G. Journal: RSC Adv; 2020 Jun 29; 10(42):25305-25310. PubMed ID: 35517492. Abstract: The cubic boron arsenide (BAs) crystal has received extensive research attention because of its ultra-high thermal conductivity comparable to that of diamond. In this work, we performed a comprehensive study on the diffusive thermal properties of its two-dimensional (2D) counterpart, the monolayer honeycomb BAs (h-BAs), through solving the phonon Boltzmann transport equation combined with first-principles calculation. We found that unlike the pronounced contribution from out-of-plane acoustic phonons (ZA) in graphene, the high thermal conductivity (181 W m-1 K-1 at 300 K) of h-BAs is mainly contributed by in-plane phonon modes, instead of the ZA mode. This result is explained by the unique frequency-independent 'platform' region in the relaxation time of in-plane phonons. Moreover, we conducted a comparative study of thermal conductivity between 2D h-BAs and h-GaN, because both of them have a similar mass density. The thermal conductivity of h-BAs is one order of magnitude higher than that of h-GaN (16 W m-1 K-1), which is governed by the different phonon scattering process attributed to the opposite wavevector dependence in out-of-plane optical phonons. Our findings provide new insight into the physics of heat conduction in 2D materials, and demonstrate h-BAs to be a new thermally conductive 2D semiconductor.[Abstract] [Full Text] [Related] [New Search]