These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cu@Co-MOFs as a novel catalyst of peroxymonosulfate for the efficient removal of methylene blue.
    Author: Li H, Xu S, Du J, Tang J, Zhou Q.
    Journal: RSC Adv; 2019 Mar 22; 9(17):9410-9420. PubMed ID: 35520731.
    Abstract:
    In this study, for the first time, we describe the single step synthesis of a Cu particle-doped cobalt-based metal-organic framework (Cu@Co-MOF) using a hydrothermal method. The as-prepared materials were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy-energy disperse spectroscopy, thermogravimetry, and X-ray photoelectron spectroscopy, which confirmed the incorporation of zero-valent copper on the surface of the Co-MOFs. The heterogeneous catalytic activity of Cu@Co-MOFs was tested to activate peroxymonosulfate (PMS) for the removal of methylene blue (MB). The ratio of n(Cu)/n(Co) in the Cu@Co-MOFs showed a strong impact on the catalytic activity of the Cu@Co-MOFs, whereas a n(Cu)/n(Co) of 1 : 1 exhibited the best catalytic performance and obtained 100% MB removal within 30 min. The effects of initial pH, reaction temperature, PMS concentration, and catalyst dosages were investigated in this study. The stability and reusability of the Cu@Co-MOFs were also investigated. The results showed a low decline in the MB removal with the increase in cycle numbers, whereas 100% MB was removed by prolonging the reaction time. Heterogeneous reactions taking place in the pores and surface of the Cu@Co-MOFs played an important role in the generation of the sulfate radicals (SO4˙-) and hydroxyl radicals (·OH) that were the primary reactive species responsible for MB degradation.
    [Abstract] [Full Text] [Related] [New Search]