These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hydrothermal synthesis of CuFe2O4 nanoparticles for highly sensitive electrochemical detection of sunset yellow. Author: Tajik S, Beitollahi H. Journal: Food Chem Toxicol; 2022 Jul; 165():113048. PubMed ID: 35523384. Abstract: The sunset yellow, as a synthetic food coloring azo dye, was detected in the present work using a new sensitive and selective sensor based on the modification of screen-printed electrode surface with Copper ferrite nanoparticles (CuFe2O4/SPE). Thus, a facile hydrothermal protocol was performed to prepare the CuFe2O4 nanoparticles, followed by characterization applying valid techniques, including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and field-emission scanning electron microscopy (FE-SEM). Chronoamperometry, differential pulse voltammetry (DPV) and cyclic voltammetry (CV) were employed to determine the electrochemical behavior of as-fabricated sensor. According to the electrochemical findings, a greater anodic peak current was found for the sunset yellow oxidation on the CuFe2O4/SPE than that on the unmodified SPE. The electrocatalytic response for the sunset yellow oxidation on the CuFe2O4/SPE in phosphate buffer (0.1 M, pH = 7.0) was effective, with an excellent sensitivity (0.1919 μA μM-1). There was a linear relationship between the voltammetric current and different sunset yellow concentrations (0.03-100.0 μM). The calculated limit of detection (LOD = 3Sb/m) for the sunset yellow was 0.009 μM.[Abstract] [Full Text] [Related] [New Search]