These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Review of droplet dynamics and dropwise condensation enhancement: Theory, experiments and applications. Author: Wang X, Xu B, Chen Z, Del Col D, Li D, Zhang L, Mou X, Liu Q, Yang Y, Cao Q. Journal: Adv Colloid Interface Sci; 2022 Jul; 305():102684. PubMed ID: 35525088. Abstract: Droplet dynamics and condensation phenomena are widespread in nature and industrial applications, and the fundamentals of various technological applications. Currently, with the rapid development of interfacial materials, microfluidics, micro/nano fabrication technology, as well as the intersection of fluid mechanics, interfacial mechanics, heat and mass transfer, thermodynamics and reaction kinetics and other disciplines, the preparation and design of various novel functional surfaces have contributed to the local modulation of droplets (including nucleation, jumping and directional migration) and the improvement of condensation heat transfer, further deepening the understanding of relevant mechanisms. The wetting and dynamic characteristics of droplets involve complex solid-liquid interfacial interactions, so that the local modulation of microdroplets and the extension of enhanced condensation heat transfer by means of complex micro/nano structures and hydrophilic/hydrophobic properties is one of the current hot topics in heat and mass transfer research. This work presents a detailed review of several scientific issues related to the droplet dynamics and dropwise condensation heat transfer under the influence of multiple factors (including fluid property, surface structure, wettability, temperature external field, etc.). Firstly, the basic theory of droplet wetting on the solid wall is introduced, and the mechanism of solid-liquid interfacial interaction involving droplet jumping and directional migration on the functional surfaces under the various influencing factors is discussed. Optimizing the surface structure for the local modulation of droplets is of guidance for condensation heat transfer. Secondly, we summarize the existing theoretical models of dropwise condensation applicable to various functional surfaces and briefly outline the current numerical models for simulating dropwise condensation at different scales, as well as the fabricating techniques of coatings and functional surfaces for enhancing heat transfer. Finally, the relevant problems and challenges are summarized and future research is discussed.[Abstract] [Full Text] [Related] [New Search]