These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tin-nitrogen coordination boosted lithium-storage sites and electrochemical properties in covalent-organic framework with layer-assembled hollow structure. Author: Tang X, Lv LP, Chen S, Sun W, Wang Y. Journal: J Colloid Interface Sci; 2022 Sep 15; 622():591-601. PubMed ID: 35533476. Abstract: Covalent-organic frameworks (COFs) and related composites show an enormous potential in next-generation high energy-density lithium-ion batteries. However, the strategy to design functional covalent organic framework materials with nanoscale structure and controllable morphology faces serious challenges. In this work, a layer-assembled hollow microspherical structure (Sn@COF-hollow) based on the tin-nitrogen (Sn-N) coordination interaction is designed. Such carefully-crafted hollow structure with large exposed surface area and metal center decoration endows the Sn@COF-hollow electrode with more activated lithium-reaction sites, including Sn ions, carbon-nitrogen double bond (CN) groups and carbon-carbon double bond (CC) units from aromatic benzene rings. Besides, the layer-assembled hollow structure of the Sn@COF-hollow electrode can also alleviate the volume expansion of electrode during repeated cycling, and achieve fast electrons/ions transmission and capacitance-dominated lithium-reaction kinetics, further leading to enhanced cycling performance and rate properties. In addition, the effective combination of the inorganic metal and organic framework components in the Sn@COF-hollow electrode can promote its improved conductivity and further enhance lithium-storage properties. Benefited from these merits, the Sn@COF-hollow electrode delivers highly reversible large capacities of 1080 mAh g-1 after 100 cycles at 100 mA g-1 and 685 mAh g-1 after 300 cycles at 1000 mA g-1. This work provides an interesting and effective way to design COF-based anodes of lithium-ion battery with improved electrochemical performances.[Abstract] [Full Text] [Related] [New Search]