These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Photocatalytic degradation of cefixime using visible light-driven Z-scheme ZnO nanorod/Zn2TiO4/GO heterostructure.
    Author: Behineh ES, Solaimany Nazar AR, Farhadian M, Moghadam M.
    Journal: J Environ Manage; 2022 Aug 15; 316():115195. PubMed ID: 35537268.
    Abstract:
    ZnO nanorod along with a Zn2TiO4/GO heterostructure with enhanced charge transfer capability was synthesized by a facile sol-gel method. FT-IR, XRD, XPS, TEM, SEM, EDX, UV-Vis DRS, photocurrent response and PL analyses were applied to characterize the as-prepared photocatalysts. To investigate the photocatalytic activity of the composite, Cefixime (CEF) removal under visible light was evaluated. The ZnO nanorod/Zn2TiO4/GO, including 65 wt% ZnO and 3 wt% graphene oxide, showed the highest CEF degradation and was selected as the optimal ternary composite. Reduction of electron-hole pair recombination rate, successful interfacial charge transfers, and more visible light reception in the Z-scheme system were the important reasons for improving the photocatalytic properties of ZnO nanorod/Zn2TiO4/GO. Effective operating parameters in the CEF photocatalytic removal process were optimized employing the response surface method and were as follows: photocatalyst dosage = 0.88 g/L, pH = 5, radiation time = 115 min, and CEF concentration = 10 ppm. The photocatalytic degradation% of CEF and total organic carbon (TOC) removal% under the optimal conditions were 71.4 and 57.5%, respectively, for the three-component composite indicating the production of intermediate species during the process. This photocatalytic reaction confirmed the first-order kinetic and using the ZnO nanorod/Zn2TiO4/GO composite was able to improve the reaction rate by about 2.7 and 6.2 times more than ZnO nanorod/Zn2TiO4 and ZnO, respectively. The effects of radiation intensity and temperature were investigated and 175 W/m2 and 35 °C were obtained as optimum values. Eventually, according to the trapping test, h+, superoxide radical, and hydroxyl radical are the most effective active species in this photocatalytic reaction, respectively.
    [Abstract] [Full Text] [Related] [New Search]