These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The Unique Magnetic Signature of Sickle Red Blood Cells: A Comparison Between the Red Blood Cells of Transfused and Non-Transfused Sickle Cell Disease Patients and Healthy Donors. Author: Weigand M, Gomez-Pastora J, Strayer J, Wu X, Choe H, Lu S, Plencner E, Landes K, Palmer A, Zborowski M, Desai P, Chalmers J. Journal: IEEE Trans Biomed Eng; 2022 Dec; 69(12):3582-3590. PubMed ID: 35544484. Abstract: Sickle cell disease (SCD) is an inherited blood disorder that affects millions of people worldwide, especially in low-resource regions of the world, where a rapid and affordable test to properly diagnose the disease would be highly valued. Magnetophoresis is a technique that could simultaneously analyze, quantify, and potentially separate the patient's sickle red blood cells (RBCs) from healthy RBCs, but the magnetic characteristics of sickle RBCs have yet to be reported. In this work, we present the single cell magnetic characterization of RBCs obtained from SCD patients. Sufficient single cells are analyzed from patient samples undergoing transfusion therapy and not yet having transfusion therapy (TP and NTP, respectively), such that means and distributions of these single RBC mobilities are created in the form of histograms which facilitated comparison to RBCs from healthy donors (HD). The magnetic characterization is obtained using a technique known as Cell Tracking Velocimetry (CTV) that quantitatively characterizes the RBC response to magnetic and gravitational fields. The magnetic properties of RBCs containing oxygenated, deoxygenated hemoglobin (Hb) and methemoglobin (oxyHb-RBCs, deoxyHb-RBCs, and metHb-RBCs) are further determined. The NTP samples reported the highest magnetic character, especially when compared to oxyHb-RBCs from HD, which implies impaired oxygen binding capabilities. Also, the oxygen-Hb equilibrium curves are obtained to estimate the magnetic character of the cells under intermediate oxygen levels. Our results confirm higher magnetic moment of SCD blood (NTP) under intermediate oxygen levels. These data demonstrate the potential feasibility of magnetophoresis to identify, quantify and separate sickle RBCs from healthy RBCs.[Abstract] [Full Text] [Related] [New Search]