These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Multitranscriptome analyses of keloid fibroblasts reveal the role of the HIF-1α/HOXC6/ERK axis in keloid development. Author: Wang Q, Zhong Y, Li Z, Zhu D, Lu H, Chen P, Li C, Peng X, Li Q, Zeng K. Journal: Burns Trauma; 2022; 10():tkac013. PubMed ID: 35547861. Abstract: BACKGROUND: A keloid is a disease of excessive fibrosis that is characterized by the aberrant proliferation of fibroblasts. However, the molecular mechanisms of fibroblasts during the development of keloids remain unclear. This study aims to identify new molecular targets that promote the proliferation and migration of keloid fibroblasts, providing new ideas for the prevention and treatment of keloids. METHODS: We utilized bioinformatics tools to analyze data from keloid fibroblasts (KFs) available in the Gene Expression Omnibus (GEO) database to identify the key genes involved in keloid development. Homeobox C6 (HOXC6) emerged as a hub gene in KFs from the GEO database was verified in keloid tissue samples and KFs using reverse transcription-quantitative polymerase chain reaction, western blot (WB) and immunohistochemistry. Subsequently, the effects of downregulated HOXC6 expression on the cellular behaviors of KFs were examined by performing Cell Counting Kit-8, flow cytometry, transwell migration and WB assays. Meanwhile, we performed transcriptome sequencing and gene set enrichment analysis (GSEA) to further explore HOXC6-related mechanisms and validated the signaling pathways by performing a series of experiments. RESULTS: HOXC6 was the top-ranking hub gene of KFs in microarray datasets from GEO and was upregulated in keloid tissue samples and KFs. Downregulation of HOXC6 inhibited proliferation, migration and extracellular matrix (ECM) accumulation and promoted KF apoptosis. GSEA predicted that the hypoxia signaling pathway was associated with HOXC6 in KFs. Transcriptome sequencing suggested that the extracellular regulated protein kinase (ERK) pathway was one of the downstream pathways of HOXC6 in KFs. Our experiments confirmed that hypoxia-inducible factor-1α (HIF-1α) upregulates HOXC6, contributing to KFs proliferation, migration, apoptosis inhibition and collagen accumulation through the ERK signaling pathway. CONCLUSIONS: Our findings first revealed that HOXC6 acts as an oncogenic driver in the molecular mechanisms of fibroblasts in keloids. The HIF-1α/HOXC6/ERK axis promotes proliferation, migration and ECM production by KFs, contributing to the progression of keloids. Taken together, HOXC6 may serve as a promising novel therapeutic target and new focus for research designed to understand the pathogenesis of keloids.[Abstract] [Full Text] [Related] [New Search]