These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evaluation of a multi-species Protein A-ELISA assay for plague serologic diagnosis in humans and other mammal hosts. Author: Bezerra MF, Xavier CC, Almeida AMP, Reis CRS. Journal: PLoS Negl Trop Dis; 2022 May; 16(5):e0009805. PubMed ID: 35551520. Abstract: BACKGROUND: The Hemagglutination assay (HA) is widely used in plague diagnosis, however, it has a subjective interpretation and demands high amounts of antigen and other immunobiological supplies. On the other hand, the conventional Anti-IgG ELISA is limited by the need of specific conjugates for multiple plague hosts, which leaves a gap for new diagnostic methods able to cover both the diagnosis of human cases and the epidemiological surveillance of multiple sentinel species. METHODS: We developed an ELISA Protein A-peroxidase method to detect anti-F1 antibodies across several species, including humans. To determine the cut-off and performance rates, HA results from 288 samples (81 rabbits, 64 humans, 66 rodents and 77 dogs) were used as reference. Next, we evaluated the agreement between Protein A-ELISA and Anti-IgG ELISA in an expanded sample set (n = 487). RESULTS: Optimal conditions were found with 250ng/well of F1 and 1:500 serum dilution. Protein A-ELISA showed high repeatability and reproducibility. We observed good correlation rates between the Protein A and IgG ELISAs optical densities and a higher positive/negative OD ratio for the Protein A-ELISA method. The overall sensitivity, specificity and area under the curve for Protein A-ELISA were 94%, 99% and 0.99, respectively. Similar results were observed for each species separately. In the analysis of the expanded sample set, there was a strong agreement between Protein A and IgG assays (kappa = 0.97). Furthermore, there was no cross-reaction with other common infectious diseases, such as dengue, Zika, Chagas disease, tuberculosis (humans) and ehrlichiosis, anaplasmosis and leishmaniasis (dogs). CONCLUSIONS: Altogether, the Protein A-ELISA showed high performance when compared both to HA and Anti-IgG ELISA, with a polyvalent single protocol that requires reduced amounts of antigen and can be employed to any plague hosts.[Abstract] [Full Text] [Related] [New Search]