These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Silica-Resorcinol-Melamine-Formaldehyde Composite Aerogels as High-Performance Thermal Insulators.
    Author: Civioc R, Malfait WJ, Lattuada M, Koebel MM, Galmarini S.
    Journal: ACS Omega; 2022 May 03; 7(17):14478-14489. PubMed ID: 35557694.
    Abstract:
    Here, we report the gelation and supercritical drying of ethanol-based silica-resorcinol-melamine-formaldehyde (RMF) composite aerogels with relative concentrations of initial reagents ranging from neat silica to neat RMF alcogels. The as-prepared materials are subsequently supercritically dried with carbon dioxide. Their properties include a thermal conductivity in the 15-20 mW·m-1·K-1 range even with a silica content as low as 20%wt. The possible reasons behind this interesting insulation performance and the mechanisms leading to the underlying gel structure are discussed in depth. A focus is made on the different gelation modes happening between the RMF and silica phases, from a coating of silica surfaces with RMF species to discontinuous RMF particles within a silica backbone and a continuous RMF backbone with isolated silica particles. The implications in terms of mechanical properties and thermal conductivity are elaborated upon. The initial ratio of silica-RMF species in this ethanol-based synthesis affects the micro- and macrostructure of the composites, resulting in materials with drastically different pore structures and thus an interesting array of possibilities for a new class of silica-organic composite aerogels, based on a sol-gel process.
    [Abstract] [Full Text] [Related] [New Search]