These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Implications of Heparanase on Heparin Synthesis and Metabolism in Mast Cells. Author: Maccarana M, Jia J, Li H, Zhang X, Vlodavsky I, Li JP. Journal: Int J Mol Sci; 2022 Apr 27; 23(9):. PubMed ID: 35563215. Abstract: Heparin is a polysaccharide expressed in animal connective tissue-type mast cells. Owing to the special pentasaccharide sequence, heparin specifically binds to antithrombin (AT) and increases the inhibitory activity of AT towards coagulation enzymes. Heparin isolated from porcine intestinal mucosa has an average molecular weight of 15 kDa, while heparins recovered from rat skin and the peritoneal cavity were 60-100 kDa and can be fragmented by the endo-glucuronidase heparanase in vitro. In this study, we have examined heparin isolated from in vitro matured fetal skin mast cells (FSMC) and peritoneal cavity mast cells (PCMC) collected from wildtype (WT), heparanase knockout (Hpa-KO), and heparanase overexpressing (Hpa-tg) mice. The metabolically 35S-labeled heparin products from the mast cells of WT, Hpa-KO, and Hpa-tg mice were compared and analyzed for molecular size and AT-binding activity. The results show that PCMC produced heparins with a size similar to heparin from porcine intestinal mast cells, whilst FSMC produced much longer chains. As expected, heparanase overexpression resulted in the generation of smaller fragments in both cell types, while heparins recovered from heparanase knockout cells were slightly longer than heparin from WT cells. Unexpectedly, we found that heparanase expression affected the production of total glycosaminoglycans (GAGs) and the proportion between heparin and other GAGs but essentially had no effect on heparin catabolism.[Abstract] [Full Text] [Related] [New Search]