These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synergistically reinforced poly(ethylene oxide)-based composite electrolyte for high-temperature lithium metal batteries. Author: Li M, Wang K, Liu J, Shen F, Xu C, Han X. Journal: J Colloid Interface Sci; 2022 Sep 15; 622():1029-1036. PubMed ID: 35567951. Abstract: Traditional liquid lithium-ion batteries are not applicable for extreme temperatures, due to the shrinkage of separators and volatility of electrolytes. It is necessary to develop advanced electrolytes with desirable characteristics in terms of thermal stability, electrochemical stability and mechanical properties. Solid-state electrolytes, such as polyethylene oxide (PEO), outperform other types and bring the opportunity to realize the high-temperature lithium-ion batteries. However, the softness of PEO at elevated temperatures leads to battery failure. In this work, a three-dimensional fiber-network-reinforced PEO-based composite polymer electrolyte is prepared. The introduced polyimide (PI) framework and trimethyl phosphate (TMP) plasticizer decrease the crystallinity of PEO and increase the ionic conductivity at 30 °C from 8.79 × 10-6 S cm-1 to 4.70 × 10-5 S cm-1. In addition, the PEO bonds tightly with PI fiber network, improving both the mechanical strength and thermal stability of the prepared electrolyte. With the above strategies, the working temperature range of the PEO-based electrolytes is greatly expanded. The LiFePO4/Li cell assembled with the PI-PEO-TMP electrolyte stably performs over 300 cycles at 120 °C. Even at 140 °C, the cell still survives 80 cycles. These excellent performances demonstrate the potential application of the PI-PEO-TMP electrolyte in developing safe and high-temperature lithium batteries.[Abstract] [Full Text] [Related] [New Search]