These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Occurrence, distribution and risk assessment of organophosphate esters (OPEs) in water sources from Northeast to Southeast China.
    Author: Zhu K, Sarvajayakesavalu S, Han Y, Zhang H, Gao J, Li X, Ma M.
    Journal: Environ Pollut; 2022 Aug 15; 307():119461. PubMed ID: 35577264.
    Abstract:
    With the wide utilization of organophosphate esters (OPEs) in recent years, OPEs have been detected more frequently in the aquatic environment. However, the distribution of OPEs in drinking source water has rarely been investigated across a large region. In this study, the occurrence and distribution of 13 OPEs were investigated in 23 source water sites from Northeast to Southeast (spacing greater than 3320 km) with a direct injection ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. Total OPEs ranged from 218.8 to 636.6 ng/L, with a mean of 380.8 ng/L. The average detected concentration of OPEs in southern cities was higher than that in northern cities. Chlorinated OPEs accounted for 64.74% of the total concentration. Triethyl phosphate (TEP), tri (2-chloroethyl) phosphate (TCEP), and tri (chloropropyl) phosphate (TCPP) were detected in all water samples. Rainfall is a significant factor that affects the OPE concentration (less rainfall, higher concentration). China's OPE concentrations have rapidly reached a median level when compared to those of other countries. Ecological risk assessment showed that most OPEs have no or low risk to organisms (fish, crustacea, algae), except tricresyl phosphate (TCP), which is medium risk. The risk of OPEs in less-rain regions needs to be of greater concern, especially TCP.
    [Abstract] [Full Text] [Related] [New Search]