These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Shape and size of the human diaphragm in vivo.
    Author: Whitelaw WA.
    Journal: J Appl Physiol (1985); 1987 Jan; 62(1):180-6. PubMed ID: 3558178.
    Abstract:
    Serial computerized tomograph (CT) sections at 5-mm intervals of a human diaphragm in relaxed and contracted states were obtained in one subject while he held his breath and lay supine in a CT scanner. All sections for one state were scanned at the same chest wall configuration as monitored by rib cage and abdominal dimensions, using magnetometers. Sections were scanned at relaxed functional residual capacity and after inspiring approximately 1 liter in such a way that rib cage dimensions increased only slightly. Models of the diaphragm dome in the two states were constructed from the sets of serial sections. Diaphragm length and volume displaced were measured, the zone of apposition of diaphragm to rib cage was mapped, and the line of the diaphragm silhouette in anteroposterior and lateral X-rays identified. Coronal and sagittal sections were constructed. In the inspiration studied, the diaphragm movement displaced 680 ml. Meridian lines in sagittal, coronal, and transverse directions over the right hemidiaphragm dome shortened by 6.7-7.2 cm, but over the left dome by only 4.0-4.3 cm. Lines of X-ray silhouettes were close to meridian lines, and estimates of shortening were similar to those made previously from X-rays. The peculiar saddle shape of the muscle may help the hemidiaphragms to operate independently, the fibers of the saddle acting as an anchor for midline directed fibers of the hemidiaphragm domes. The shape of the diaphragm also has implications for the distribution of transdiaphragmatic pressure and for the kind of distortion of the lower rib cage margin that is seen during inspirations at high lung volume.
    [Abstract] [Full Text] [Related] [New Search]