These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cholesterol is not synthesized in membranes bearing 3-hydroxy-3-methylglutaryl coenzyme A reductase. Author: Lange Y, Muraski MF. Journal: J Biol Chem; 1987 Apr 05; 262(10):4433-6. PubMed ID: 3558346. Abstract: We have shown previously that newly synthesized lanosterol and cholesterol in homogenates of cultured human fibroblasts do not have the same equilibrium buoyant density as the 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) in the smooth endoplasmic reticulum (SER) (Lange, Y., and Steck, T. L. (1985) J. Biol. Chem. 260, 15592-15597). This finding suggested two alternative and novel hypotheses: (a) that lanosterol and cholesterol might be transported rapidly from the SER to other internal membranes or (b) that synthesis of the sterols is not associated with the SER, or at least not with that portion of this organelle bearing HMG-CoA reductase. We therefore compared the subcellular distribution of HMG-CoA reductase with that of enzymes which convert lanosterol to cholesterol. The two activities studied were the consumption of exogenous [3H]lanosterol and the conversion of exogenous radiolanosterol to radiocholesterol. Differential centrifugation, rate zonal centrifugation, and equilibrium sucrose gradient centrifugation of rat liver homogenates all showed that these enzyme activities did not comigrate with HMG-CoA reductase. The subcellular distribution of newly synthesized sterols also was examined in cultured human fibroblasts. Cells were incubated with radioactive acetate to label endogenous sterols biosynthetically, homogenized, and spun to equilibrium on sucrose gradients. The buoyant density profiles of radioactive cholesterol and lanosterol both had a peak at 1.12 g/cm3. Digitonin treatment shifted both sterols to higher densities, strong evidence that they resided in cholesterol-rich membranes. Pretreatment of intact cells with cholesterol oxidase, which selectively oxidizes plasma membrane cholesterol, abolished the digitonin shift of lanosterol but not of intracellular cholesterol. These findings provide support for the hypothesis that newly synthesized cholesterol and lanosterol are not in the same membrane.[Abstract] [Full Text] [Related] [New Search]