These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enantioselective recognition of esomeprazole with a molecularly imprinted sol-gel-based electrochemical sensor.
    Author: Karadurmus L, Corman ME, Uzun L, Ozkan SA.
    Journal: Mikrochim Acta; 2022 May 19; 189(6):225. PubMed ID: 35585299.
    Abstract:
    A simple, selective, and accurate electrochemical chiral sensor based on molecularly imprinted polymer (MIP) has been developed for sensitive and selective detection of esomeprazole (ESOM). For this purpose, the porous MIP sensor was prepared using tetraethyl orthosilicate (TEOS) and cetyltrimethylammonium bromide (CTAB) in the presence of β-cyclodextrin (β-CD) as a chiral recognizing element on a glassy carbon electrode (GCE). The changes in the MIP-layer related to removal and rebinding of the target ESOM were performed via differential pulse voltammetry (DPV) and cyclic voltammetry (CV) by using [Fe(CN)6]3-/4- as the redox probe. The structures of the developed sensor surface were characterized by using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Electrochemical impedance spectroscopy (EIS) was also utilized for a complementary electrochemical characterization. The calibration curve was obtained in the range 1.0 × 10-14-2.0 × 10-13 M with a limit of detection (LOD) of 1.9 × 10-15 M. The developed method has improved the accessibility of binding sites by producing the porous material via hydrolysis/condensation reaction of TEOS in presence of CTAB. The selectivity tests of the developed SiO2-β-CD@MIP/GCE sensor indicated a high specificity towards ESOM compared with structurally related competitor molecules such as R-omeprazole (R-OM), R-lansoprazole, and S-lansoprazole. The developed sensor was successfully used to determine ESOM in tablets and commercial human serum samples with satisfactory recoveries (100.25 to 100.60%) and precision (RSD 0.46 to 0.66%).
    [Abstract] [Full Text] [Related] [New Search]