These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Developmental endocrinology of larval moulting in the tobacco hornworm, Manduca sexta.
    Author: Bollenbacher WE, Granger NA, Katahira EJ, O'Brien MA.
    Journal: J Exp Biol; 1987 Mar; 128():175-92. PubMed ID: 3559461.
    Abstract:
    A larval moult in the tobacco hornworm, Manduca sexta, involves an endocrine cascade that begins with the release of a cerebral peptide hormone, the prothoracicotropic hormone (PTTH). The release of PTTH is gated, occurs during the scotophase and appears to be developmentally cued. In fourth instar Manduca larvae, PTTH release into the haemolymph occurs as a single burst over a few hours during the head critical period, i.e. the time during which the head (brain) is needed for the initiation of the moult to the fifth (last) instar. Released PTTH activates the prothoracic glands (PGs), and within a few hours the cumulative effect of this event results in a dramatic increase in the haemolymph ecdysteroid titre, which then elicits the moult. An assessment of the capacity of the corpora allata (CA) to synthesize juvenile hormone (JH) in vitro indicates that the above sequence of endocrine events begins only when JH synthesis has reached a nadir for the instar. Since CA activity is an indirect measure of the haemolymph titre of the hormone, it is conceivable that the developmentally cued release of PTTH is permissively controlled by a decreasing haemolymph titre of JH. With the increase in the ecdysteroid titre which marks the end of this endocrine cascade, the CA again become active, presumably to cause the increase in the JH haemolymph titre which directs the larval moult. This investigation has thus established the temporal and quantitative dynamics of the PTTH-PG axis that drive larval moulting and provides insight into the interendocrine regulatory relationships that may exist between the ecdysteroids and JHs. These possible relationships and the role of the brain in their regulation are discussed.
    [Abstract] [Full Text] [Related] [New Search]