These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development of taste responses in the rat parabrachial nucleus.
    Author: Hill DL.
    Journal: J Neurophysiol; 1987 Feb; 57(2):481-95. PubMed ID: 3559689.
    Abstract:
    Extracellular responses from neurons in the parabrachial nuclei (PBN) were studied in rats 4 days old to adulthood during chemical stimulation of the tongue with monochloride salts, citric and hydrochloric acids, sucrose, sodium saccharin, and quinine hydrochloride. Multiunit taste responses were recorded in rats at 4-7 days of age and single-unit responses were recorded from 121 neurons in four other age groups of 14-20 days, 25-35 days, 50-60 days, and adults. PBN neurons in rats 4-7 days old consistently responded to 0.1 M solutions of NH4Cl and NaCl, to 0.5 M solutions of NH4Cl, NaCl, and KCl, and to 1.0 M sucrose, 0.1 M sodium saccharin, 0.1 M citric acid, and 0.1 N HCl. They often did not respond, however, to 0.1 M KCl and 0.01 M quinine hydrochloride. Single PBN neurons in rats 14 days old and older characteristically responded to all stimuli, which consisted of 0.1 and 0.5 M salts, acids, sucrose, sodium saccharin, and quinine hydrochloride. Thus no developmental differences occurred in the number of stimuli to which neurons responded after rats were 14 days old. With the exception of responses to hydrochloric acid, there were significant increases in response frequencies to all stimuli after 14 days of age. Average response frequencies to NH4Cl and citric acid increased after 20 days of age and those to NaCl, LiCl, KCl, sucrose, sodium saccharin, and quinine hydrochloride increased after 35 days of age. Average response frequencies for hydrochloric acid did not alter after 14 days of age. The proportion of single PBN neurons that responded maximally to specific monochloride salts did not change during development. Most single neurons in all age groups responded equally well to NH4Cl, NaCl, and LiCl. No PBN neuron responded maximally to KCl. Developmental differences in response frequencies of third-order gustatory neurons in the PBN generally reflect developmental response changes in first-order neurons of the chorda tympani nerve and second-order neurons of the solitary nucleus. However, unique developmental changes are evident in the PBN. Thus the ontogenetic changes that occur in PBN responses likely relate to modifications of lower-order peripheral and central nervous system afferents and peripheral receptor sensitivities.
    [Abstract] [Full Text] [Related] [New Search]