These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Backgrounds as a potentially important component of riverine nitrate loads.
    Author: Li S, Jiang H, Xu Z, Zhang Q.
    Journal: Sci Total Environ; 2022 Sep 10; 838(Pt 2):155999. PubMed ID: 35597340.
    Abstract:
    Nitrate (NO3-) is a major trigger for river eutrophication. While efforts have been made to understand the anthropogenic NO3- pollution in rivers, the role of background NO3- in determining NO3- loads remains to be studied. In this study, we used dual-isotopes (δ15N/δ18O-NO3-) and an isotope-mixing model to reveal the natural and anthropogenic processes regulating the NO3- loads in a forest river that acts as a headwater source for the China's South to North Water Transfer Project. Even though the basin is sparsely populated, the mean NO3--N concentration (0.6 ± 0.2 mg/L) was much higher than the median concentration of global rivers (0.3 ± 0.2 mg/L). Meanwhile, the δ15N-NO3- was extremely depleted (as low as -14.4‰). The correlations between the NO3- concentrations and isotopes indicate that the nitrification of different sources (i.e., soil organic nitrogen, chemical fertilizer, manure, and sewage) dominates the NO3- loads. Soil organic nitrogen accounted for c.a. 60% of the riverine NO3- in the high-flow season, which alone exceeds China's national standard. This finding clearly shows that high NO3- loads in rivers could not all be ascribed to direct anthropogenic inputs, and background NO3- could be critical triggers. Therefore, when evaluating the NO3- pollution of rivers, the background NO3- concentrations must be considered along with the actual NO3- loads. In the low-flow season, the contribution from manure and sewage (c.a. 34%) increases. This study highlights the potentially important role of background NO3- in regulating riverine NO3- loads, providing important implications for understanding high riverine NO3- loads worldwide.
    [Abstract] [Full Text] [Related] [New Search]