These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tetraphenylethylene-Functionalized Metal-Organic Frameworks with Strong Aggregation-Induced Electrochemiluminescence for Ultrasensitive Analysis through a Multiple Convertible Resonance Energy Transfer System.
    Author: Xiong X, Xiong C, Gao Y, Xiao Y, Chen MM, Wen W, Zhang X, Wang S.
    Journal: Anal Chem; 2022 Jun 07; 94(22):7861-7867. PubMed ID: 35603578.
    Abstract:
    Since aggregation-induced electrochemiluminescence (AIECL) combined the merits of aggregation-induced emission (AIE) and electrochemiluminescence (ECL), it has become a research hotspot recently. Herein, novel kinds of functional metal-organic frameworks (MOFs) with strong AIECL were reported through doping tetraphenylethylene (TPE) into UiO-66. Due to the porosity and highly ordered topological structure that caused the confinement effect of MOFs, the molecular motion of TPE was effectively limited within UiO-66, resulting in strong AIE. Meanwhile, the large specific surface area and porous structure of UiO-66 allowed TPE to react with coreactants more effectively, which was beneficial to ECL. Thus, the TPE-functionalized UiO-66 (TPE-UiO-66) showed excellent AIECL performance surprisingly. Inspired by this, a multiple convertible ECL resonance energy transfer (ECL-RET) system was constructed through a DNA Y structure that regulated the distance between the energy donor (TPE-UiO-66) and different energy acceptors (gold nanoparticles and Adriamycin). Furthermore, an ultrasensitive ECL biosensor for the detection of Mucin 1 (MUC1) was developed through the introduction of the novel ECL-RET system. In the presence of MUC1, the DNA Y structure was constructed, keeping the gold nanoparticles (AuNPs) away from TPE-UiO-66. Then, Adriamycin (Dox) could be embedded in the DNA Y structure and act as an energy acceptor to receive the energy of TPE-UiO-66, which made the biosensor produce a strong ECL response. As expected, the developed ECL biosensor exhibited superior detection performance for MUC1. This work provided a novel way to realize AIECL and board the application of AIECL in analytical chemistry.
    [Abstract] [Full Text] [Related] [New Search]