These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Amine-bilayer-functionalized cellulose-chitosan composite hydrogel for the efficient uptake of hazardous metal cations and catalysis in polluted water.
    Author: Godiya CB, Revadekar C, Kim J, Park BJ.
    Journal: J Hazard Mater; 2022 Aug 15; 436():129112. PubMed ID: 35605498.
    Abstract:
    Herein, we represent a novel ecofriendly bilayer-amine group incorporated microcrystalline cellulose (MCC)/chitosan (CS) hydrogel, fabricated via integrating polydopamine (PDA) and polyethyleneimine (PEI) for reliable and effective extraction of copper (Cu2+), zinc (Zn2+), and nickel (Ni2+) ions from effluents. Owing to abundant adsorptive sites, the MCC-PDA-PEI/CS-PDA-PEI hydrogel showed excellent Cu2+, Zn2+, and Ni2+ adsorbabilities of ~434.8, ~277.7, and ~261.8 mg/g, respectively, in a single-ion adsorption system with the adsorption kinetics and isotherm complied with pseudo-second-order and Langmuir models, respectively. In a multi-ion adsorption system, hydrogel removes mixed metal cations with slightly higher selectivity for Cu2+. In accordance with X-ray photoelectron and Fourier-transform-infrared spectrometric analyses, a plausible binding mechanism of metal cations on the as-prepared hydrogel was proposed by chelation between hydrogel functional groups and metal ions. In the repetitive adsorption/desorption experiments, the hydrogel retained >40% metal ion adsorption and desorption capacities after four cycles. Furthermore, the Cu2+-adsorbing hydrogel could serve as a support for the in situ development of Cu nanoparticles, which showed excellent catalytic performance as demonstrated by the transformation of 4-nitrophenol (4-NP) to 4-aminophenol. This work provides a novel ecofriendly, reusable, and highly-efficient adsorbent, as well as a biocatalyst for remediation of heavy metal cations and 4-NP polluted effluents.
    [Abstract] [Full Text] [Related] [New Search]