These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A multidrug efflux protein in Mycobacterium tuberculosis; tap as a potential drug target for drug repurposing.
    Author: Dwivedi M, Mukhopadhyay S, Yadav S, Dubey KD.
    Journal: Comput Biol Med; 2022 Jul; 146():105607. PubMed ID: 35617724.
    Abstract:
    Tuberculosis (TB) is a serious communicative disease caused by Mycobacterium tuberculosis. Although there are vaccines and drugs available to treat the disease, they are not efficient, moreover, multidrug-resistant TB (MDR-TB) become a major hurdle in its therapy. These MDR strains utilize the multidrug efflux pump as a decisive weapon to fight against antitubercular drugs. Tap membrane protein was observed as a crucial multidrug efflux pump in M. tuberculosis and its critical implication in MDR-MTB development makes it an effective drug target. In the present study, we have utilized various in silico approaches to predict the applicability of FDA-approved ion channel inhibitors and blockers as therapeutic leads against Tuberculosis by targeting multidrug efflux protein; Tap in MTB. Tap protein structure is predicted by Phyre2 server followed by model refinement, validation, physio-chemical catheterization and target prediction. Further, the interaction between Tap protein and ligands were analysed by molecular docking and MD simulation run of 100 ns. Based on implication and compatibility, 18 FDA-approved ion channel inhibitors and blockers are selected as a ligand against the Tap protein and eventually observed five ligands; Glimepiride, Flecainide, Flupiritine, Nimodipine and Amlodipine as promising compounds which have exhibited the significant stable interaction with Tap protein and are proposed to modulate or interfere with its activity. These compounds illustrated the substantial docking score and total binding enthalpy more than -7 kcal/mol and -42 kcal/mol respectively which implies that the selected FDA-approved compounds can spontaneously interact with the Tap protein to modulate its function. This study proposed Tap protein as a prominent drug target in MTB and investigated compounds that show considerable interaction with the Tap protein as potential therapeutic molecules. These interactions may lead to modulating or inhibit the activity of drug efflux protein thereby making MTB susceptible to antitubercular drugs.
    [Abstract] [Full Text] [Related] [New Search]