These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Detection of SARS-CoV-2 RNA through tandem isothermal gene amplification without reverse transcription.
    Author: Lee H, Lee H, Hwang SH, Jeong W, Kim DE.
    Journal: Anal Chim Acta; 2022 Jun 15; 1212():339909. PubMed ID: 35623783.
    Abstract:
    Diagnosis of SARS-CoV-2 infection through rapid, accurate, and sensitive testing is the most important and fundamental step in coping with the COVID-19 epidemic. We have developed a sensitive fluorometric assay to detect SARS-CoV-2 viral RNA without thermal cycling. This assay system, based on tandem isothermal gene amplification (TIGA), is composed of ternary rolling circle amplification (t-RCA) and subsequent strand displacement amplification (SDA) coupled with G-quadruplex-generating RCA (SDA/GQ-RCA). Without the need to convert viral RNA into cDNA, viral RNA forms a ternary complex composed of hairpin primer (HP) and dumbbell padlock DNA during the t-RCA process. t-RCA generates a long chain of single-stranded DNA (ssDNA) with tandemly repeated hairpin structures that are subjected to SDA. SDA produces multiple short ssDNAs from t-RCA products, which then serve as primers for the second RCA reaction. A long ssDNA harboring repeated copies of the G-quadruplex is produced in the second round of RCA. Emission of enhanced fluorescence by thioflavin T, which intercalates into the G-quadruplex, allows fluorometric detection of amplified viral genes. This fluorometric analysis sensitively detected SARS-CoV-2 RNA as low as 5.9 aM, with a linear range between 0.2 fM and 200 fM within 1 h. Hence, this isothermal gene amplification method without reverse transcription of viral RNA can be applied to diagnose COVID-19 with high sensitivity and accuracy as an alternative to current PCR-based diagnosis.
    [Abstract] [Full Text] [Related] [New Search]