These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rapid Capturing and Chemiluminescent Sensing of Programmed Death Ligand-1 Expressing Extracellular Vesicles. Author: Khan A, Di K, Khan H, He N, Li Z. Journal: Biosensors (Basel); 2022 Apr 28; 12(5):. PubMed ID: 35624582. Abstract: Cancer specific extracellular vesicles (EVs) are of significant clinical relevance, for instance programmed death ligand-1 (PD-L1) expressing EVs (PD-L1@EVs) have been shown to be ideal biomarker for non-invasive diagnosis of cancer and can predate the response of cancer patients to anti-PD-1/PD-L-1 immunotherapy. The development of sensitive and straightforward methods for detecting PD-L1@EVs can be a vital tool for non-invasive diagnosis of cancer. Most of the contemporary methods for EVs detection have limitations such as involvement of long and EV's loss prone isolation methods prior to detection or they have employed expensive antibodies and instruments to accomplish detection. Therefore, we designed an ultracentrifugation-free and antibody-free sensing assay for PD-L1@EV by integrating Titanium oxide (TiO2) coated magnetic beads (Fe3O4@TiO2) rapid capturing of EVs from undiluted serum with aptamers specificity and chemiluminescence (CL) sensitivity. To accomplish this we used Fe3O4@TiO2 beads to rapidly capture EVs from the undiluted patient serum and added biotin labelled PD-L1 aptamer to specifically recognize PD-L1@EVs. Later, added streptavidin-modified Alkaline phosphates (ALP) taking advantage of biotin-streptavidin strong binding. Addition of CDP-star, a chemiluminescent substrate of ALP, initiates the chemiluminiscense that was recorded using spectrophotometer. The sensing assay showed high sensitivity with limit of detection (LOD) as low as 2.584×105 EVs/mL and a wider linear correlation of CL intensity (a.u.) with the concentration of PD-L1@EVs from 105 to 108 EVs/mL. To examine the clinical utility of sensing assay we used undiluted serum samples from lung cancer patients and healthy individuals and successfully discern between healthy individuals and lung cancer patients. We are optimistic that the sensing assay can ameliorate our ability to be able to diagnose lung cancer non-invasively and can be helpful to predate the patient's response to anti-PD-1/PD-L1 immunotherapy.[Abstract] [Full Text] [Related] [New Search]