These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Screening and identification of α-glucosidase inhibitors from Cyclocarya paliurus leaves by ultrafiltration coupled with liquid chromatography-mass spectrometry and molecular docking.
    Author: Li YJ, Wan GZ, Xu FC, Guo ZH, Chen J.
    Journal: J Chromatogr A; 2022 Jul 19; 1675():463160. PubMed ID: 35635870.
    Abstract:
    Cyclocarya paliurus, as an important edible and medicinal product, has shown a good prospect in the prevention of diabetes mellitus (DM). However, it is unclear which active compounds derived from C. paliurus play a significant role in inhibiting α-glucosidase activity. In present study, affinity-based screening assay was developed to screen and identify potential α-glucosidase inhibitors from C. paliurus leaves based on affinity ultrafiltration coupled with ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) and molecular docking. After being enriched by D-101 macroporous resin, five eluent fractions with different polarity were obtained and their inhibitory activities on α-glucosidase were evaluated by an enzyme inhibition assay in vitro. The result showed that 70% ethanol fraction of C. paliurus leaves exhibited remarkable α-glucosidase inhibitory activity with the IC50 value of 17.81 µg/mL. The 70% ethanol fraction was incubated with α-glucosidase and then active compounds would form enzyme-inhibitor complexes. The complexes could be separated from inactive components by the interception ability of ultrafiltration membrane under centrifugation. A total of 36 active compounds were screened from C. paliurus leaves and the chemical structures were further characterized by UPLC-QTOF-MS/MS. Furthermore, molecular docking was performed to investigate possible inhibitory mechanisms between active compounds and α-glucosidase. The docking result showed that cyclocarioside I, pterocaryoside B, arjunolic acid, cyclocarioside Z5, cypaliuruside D and cyclocarioside N could be embedded well into the active pocket of α-glucosidase, and had significant affinity interactions with critical amino acid residues by forming hydrogen bonds, hydrophobic interactions and van der Waals, and affinity energies ranged from -9.3 to -6.7 kJ/mol. The results indicated that the developed method is rapid and effective for high throughput screening of potential α-glucosidase inhibitors from complex mixtures. Moreover, C. paliurus exhibited a remarkable inhibitory activity on α-glucosidase, making it a promising candidate for the prevention of DM.
    [Abstract] [Full Text] [Related] [New Search]