These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Botulinum A neurotoxin unlike tetanus toxin acts via a neuraminidase sensitive structure.
    Author: Bigalke H, Müller H, Dreyer F.
    Journal: Toxicon; 1986; 24(11-12):1065-74. PubMed ID: 3564058.
    Abstract:
    The binding and effects of tetanus and botulinum A neurotoxins were studied on mouse spinal cord cultures treated with neuraminidase. In untreated cultures both neurotoxins blocked synaptic transmission. Treatment of the cell cultures with neuraminidase, 25 mU/ml for 24 hr, decreased the potency of botulinum A neurotoxin. At 7 X 10(-11) M no toxin effect on inhibitory or excitatory synapses was observed, whereas at higher concentrations of the toxin the concentration-response curve was shifted to the right by a factor of about 30. Surprisingly, the action of tetanus toxin over a large concentration range was unaffected by pretreatment of the neurones with the enzyme. Accordingly, neurones treated with neuraminidase failed to bind 125I-botulinum A neurotoxin, whereas labelled tetanus toxin was still fixed by cell bodies, as well as by neurites, as shown by histoautoradiography. Chromatographic extraction of gangliosides from cultures prelabelled with 14C-glucosamine showed a dramatic loss in the contents of polysialogangliosides following treatment with neuraminidase. Our results indicate that neuraminidase-sensitive structures might be important for the action of botulinum A neurotoxin. The effect of tetanus toxin appears to be mediated by a different site which is insensitive to neuraminidase.
    [Abstract] [Full Text] [Related] [New Search]