These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Aerosol liquid water content of PM2.5 and its influencing factors in Beijing, China.
    Author: Su J, Zhao P, Ge S, Ding J.
    Journal: Sci Total Environ; 2022 Sep 15; 839():156342. PubMed ID: 35640746.
    Abstract:
    Aerosol liquid water content (ALWC) has important influences on atmospheric radiation and aerosol chemical processes. In this work, the changes in ALWC of PM2.5 were investigated over four seasons based on hourly monitoring of inorganic water-soluble ions and their gaseous precursors using the thermodynamic model ISORROPIA II. The results showed that the ALWC concentrations exhibited pronounced seasonal (autumn > summer > spring > winter) and diurnal variation characteristics. The sensitivity tests indicated that ALWC depended strongly on TSO4 (total sulfate (gas and aerosols) expressed as equivalent H2SO4), followed by TNO3 (total nitrate (gas and aerosols) expressed as equivalent HNO3). The relatively low concentration of TCl (total chloride (gas and aerosols) expressed as equivalent HCl) limit its importance in the atmosphere. ALWC showed exponential growth features as a function RH in all four seasons. RH became the most influential factor on the variation of ALWC when RH exceeded 80% in all seasons. The seasonal average data showed that the ALWC increased from 2.92 μg·m-3 to 75.83 μg·m-3 when ambient RH increased from 30% to 90%, the associated sulfate, nitrate, and ammonium (abbreviated as SNA) mass fraction in PM2.5 rose from 0.39 to 0.58 in the atmosphere. The ALWC facilitated the formation of SNA through gas-particle conversion and partitioning. The self-amplifying processes between ALWC and SNA enhanced aerosol formation. By modeling ALWC under different seasonal atmospheric scenarios, it was found that reductions in chemical species could reduce ALWC concentrations in different degrees. Based on the current emission conditions, controlling excess NH3 emission could effectively reduce ALWC to a maximum of 45.71% in summer, indicating that NH3 control was crucial for reducing ALWC and PM2.5 concentrations under high levels of SO42- and NO3-.
    [Abstract] [Full Text] [Related] [New Search]