These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Filtered air intervention modulates hypothalamic-pituitary-thyroid/gonadal axes by attenuating inflammatory responses in adult rats after fine particulate matter (PM2.5) exposure.
    Author: Liu C, Yang J, Du X, Geng X.
    Journal: Environ Sci Pollut Res Int; 2022 Oct; 29(49):74851-74860. PubMed ID: 35641749.
    Abstract:
    We have previously reported that filtered air (FA) intervention reduces inflammation and hypothalamus-pituitary-adrenal axis activation after fine particulate matter (PM2.5 exposure). Whether FA also modulates the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-gonadal (HPG) axes in rats after PM2.5 exposure is still unknown. Adult Sprague-Dawley rats were exposed to PM2.5 by using a "real-world" PM2.5 exposure system, and the FA intervention was conducted by renewing for 15 days. PM2.5 inhalation decreased thyrotropin-releasing hormone (TRH) and thyroxine (T4) levels in both male and female rats, and thyroid-stimulating hormone (TSH) level in male rats. FA intervention attenuated the reduction in TRH and TSH levels in male rats and reduction in T4 level in female rats. PM2.5 inhalation also reduced testosterone (T) level in male rats, and estradiol (E2) and progesterone (PROG) levels in female rats, and these changes were attenuated after FA intervention. The FA intervention attenuated the decreases in CD8 T cells and T cells induced by PM2.5 inhalation in female rats only by flow cytometry analysis. In blood, FA interventions ameliorated IL-6 and IL-1β mRNA levels in both male and female rats after PM2.5 exposure. FA intervention restored the IL-4 and IL-10 levels in female rats after PM2.5 exposure. Moreover, FA intervention ameliorated the inflammatory responses induced by PM2.5 inhalation in the thyroid and gonads in both male and female rats. These data indicate that FA intervention exerted an effect on modulating the hormonal balance of the HPT and HPG axes, and this may be related to a reduction in the inflammatory responses in the thyroid and gonads of PM2.5-treated rats, respectively.
    [Abstract] [Full Text] [Related] [New Search]