These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nuclear quantum effects on the dynamics and glass behavior of a monatomic liquid with two liquid states. Author: Eltareb A, Lopez GE, Giovambattista N. Journal: J Chem Phys; 2022 May 28; 156(20):204502. PubMed ID: 35649856. Abstract: We perform path integral molecular dynamics (PIMD) simulations of a monatomic liquid that exhibits a liquid-liquid phase transition and liquid-liquid critical point. PIMD simulations are performed using different values of Planck's constant h, allowing us to study the behavior of the liquid as nuclear quantum effects (NQE, i.e., atoms delocalization) are introduced, from the classical liquid (h = 0) to increasingly quantum liquids (h > 0). By combining the PIMD simulations with the ring-polymer molecular dynamics method, we also explore the dynamics of the classical and quantum liquids. We find that (i) the glass transition temperature of the low-density liquid (LDL) is anomalous, i.e., TgLDL(P) decreases upon compression. Instead, (ii) the glass transition temperature of the high-density liquid (HDL) is normal, i.e., TgHDL(P) increases upon compression. (iii) NQE shift both TgLDL(P) and TgHDL(P) toward lower temperatures, but NQE are more pronounced on HDL. We also study the glass behavior of the ring-polymer systems associated with the quantum liquids studied (via the path-integral formulation of statistical mechanics). There are two glass states in all the systems studied, low-density amorphous ice (LDA) and high-density amorphous ice (HDA), which are the glass counterparts of LDL and HDL. In all cases, the pressure-induced LDA-HDA transformation is sharp, reminiscent of a first-order phase transition. In the low-quantum regime, the LDA-HDA transformation is reversible, with identical LDA forms before compression and after decompression. However, in the high-quantum regime, the atoms become more delocalized in the final LDA than in the initial LDA, raising questions on the reversibility of the LDA-HDA transformation.[Abstract] [Full Text] [Related] [New Search]