These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel interleukin-1 receptor-associated kinase 4 from blunt snout bream (Megalobrama amblycephala) is involved in inflammatory response via MyD88-mediated NF-κB signal pathway.
    Author: Zhang R, Liu Y, Wang W, Xu Y, Wang Z, Zhong H, Tang C, Wang J, Sun H, Mao H, Yan J.
    Journal: Fish Shellfish Immunol; 2022 Aug; 127():23-34. PubMed ID: 35661767.
    Abstract:
    Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a crucial role in the Toll-like receptor/IL-1R signal pathway, which mediates the downstream signal transduction involved in innate and adaptive immunity. In the present study, an IRAK4 homologue (named as MaIRAK4) from blunt snout bream (Megalobrama amblycephala) was cloned and characterized. The open reading frame (ORF) of MaIRAK4 contains 1422 nucleotides, encoding a putative protein of 473 amino acids. Protein structural analysis revealed that MaIRAK4 has an N-terminal death domain (DD) and a central kinase domain (S_TKc), similar to those of mammals and other fishes. Multiple sequence alignment demonstrated that MaIRAK4 is highly homologous with that of grass carp (97.67%). The qRT-PCR analysis showed that MaIRAK4 expressed widely in all examined tissues, including heart, liver, spleen, kidney, head-kidney, gill, intestine and muscle, with the highest expression in the liver and spleen. After stimulation with LPS, MaIRAK4 expression upregulated significantly and reached a peak at 6 h and 12 h post LPS stimulation in the spleen and head-kidney, respectively. After challenge with Aeromonas hydrophila, MaIRAK4 expression peaked at 48 h and 72 h in spleen/head-kidney and liver, respectively. These results implied that MaIRAK4 is involved in the host defense against bacterial infection. Subcellular localization analysis indicated that MaIRAK4 distributed in the cytoplasm. Co-immunoprecipitation and subcellular co-localization assay revealed that MaIRAK4 can combine with MaMyD88 through DD domain. MaIRAK4 overexpression can induce slightly the NF-κB promoter activity in HEK 293 cells. However, the activity of NF-κB promoter was dramatically enhanced after co-transfection with MaIRAK4 and MaMyD88 plasmids. The results showed that MaIRAK4 was involved in NF-κB signal pathway mediated by maMyD88. The expression level of pro-inflammatory cytokines (IL-1β, IL-6, IL-8 and TNF-α) decreased significantly after the siRNA-mediated knockdown of MaIRAK4. Together, these results suggest that MaIRAK4 plays an important function in the innate immunity of M. amblycephala by inducing cytokines expression.
    [Abstract] [Full Text] [Related] [New Search]