These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Efficient dye-sensitized solar cell fabricated using a less toxic alternative to electrolyte and charge collector.
    Author: Patni N, Pillai SG.
    Journal: Environ Sci Pollut Res Int; 2022 Oct; 29(50):75955-75965. PubMed ID: 35665892.
    Abstract:
    The photovoltaic investigation of novel and efficient dye-sensitized solar cells is discussed in this paper. Ruthenium-based synthetic dye (N3) is used as a sensitizer. A less toxic alternative is suggested for toxic indium-based glass substrates by using aluminum-doped zinc oxide (AZO) and fluorine-doped tin oxide (FTO) as charge collectors. Moreover, the electrolyte used is a mixture of polymer (polyaniline) and an iodide-triiodide couple to go for the approach involving a lower amount of iodine. In the paper study, on the extent of light, absorption of dye is done by ultraviolet-visible (UV-vis) spectroscopy. The morphological study of sheets is done using scanning electron microscopic (SEM) images to understand the binding of titania on photoanode. Photovoltaic characteristics (I-V) and induced photon to current efficiency (IPCE) measurements, and light harvesting efficiency (LHE) are also investigated. The highest power conversion efficiency of 6.18% is observed in the suggested fabricated green solar cell. Hence, more efficient, indium-free, and novel cell is fabricated by the usage of different charge collector substrates and quasi solid-state electrolytes.
    [Abstract] [Full Text] [Related] [New Search]