These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A sensitive and stable acetylcholinesterase biosensor with TiO2 nanoparticles anchored on graphitic carbon nanofibers for determination of organophosphate pesticides.
    Author: Tao S, Guo Y, Wang S, Xu F, Zhou X, Guo Q.
    Journal: Anal Methods; 2022 Jun 23; 14(24):2396-2404. PubMed ID: 35666469.
    Abstract:
    Electrode materials play a central role in assembling biosensors. In this work, a titanium dioxide nanoparticle loaded graphitized carbon nanofiber (TiO2/GNF) composite is prepared for the sensitive detection of organophosphorus pesticide residues (OPs). The TiO2/GNF composite with superior conductivity, catalytic activity and biocompatibility offers an extremely hydrophilic surface for the effective immobilization of acetylcholinesterase (AChE). Furthermore, the Ti atoms of TiO2/GNFs could coordinate with AChE to improve its stability, and TiO2 has a strong adsorption on OPs. The developed AChE/TiO2/GNFs/GCE biosensor showed a high affinity to acetylthiocholine chloride (ATCh) and could catalyze the hydrolysis of ATCh with an apparent Michaelis-Menten constant (Km) of 50 μM. The constructed AChE/TiO2/GNFs/GCE biosensor exhibits a wide detection linear range (1.0 × 10-13 M to 1.0 × 10-8 M) with a low detection limit (3.3 fM) for paraoxon determination (a model of OPs). In addition, the developed biosensor possesses remarkable anti-interference, acceptable reproducibility and good long-term stability, and is successfully used for the determination of OPs in lake water, providing a new strategy for the analysis of OPs in ecological environments.
    [Abstract] [Full Text] [Related] [New Search]