These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Permeability studies on liposomes formed from polymerizable diacetylenic phospholipids and their potential applications as drug delivery systems.
    Author: Freeman FJ, Hayward JA, Chapman D.
    Journal: Biochim Biophys Acta; 1987 May 19; 924(2):341-51. PubMed ID: 3567222.
    Abstract:
    We have investigated the permeability and entrapment characteristics of liposomes formed from a group of polymerizable phospholipids, containing diacetylenic groups in one or both of their acyl chains. Permeability was assessed by the release of an entrapped dye, 6-carboxyfluorescein. Diacetylenic phosphatidylcholine (PC) liposomes were found to exhibit a wide range of permeability properties, depending on: the nature of the diacetylenic lipid, i.e. mixed-chain (mc) or identical-chain (id), the extent of polymerisation, vesicle size, and cholesterol content. Ultraviolet-initiated polymerisation affected a significant decrease in the permeability of C25idPC liposomes. The increase in permeability of liposomes formed from four other diacetylenic lipids (C25mcPC, C23idPC, C23mcPC and C20idPC) after polymerisation was attributed to disturbances in the packing of lipid molecules, and/or the limited ability of small unilamellar vesicles to accommodate long polymers. The C20idPC lipid is atypical, forming irregular monomeric and polymeric vesicles. The permeability of C25idPC liposomes was also assessed by the release of [3H]inulin. C25idPC liposomes exhibited low permeabilities to [3H]inulin in their monomeric and polymeric states. Incubation of C25idPC liposomes in human plasma caused a substantial increase in the permeability of monomeric vesicles to both carboxyfluorescein and [3H]inulin. The permeability of polymerised C25idPC liposomes, however, was unaffected in the presence of plasma, with vesicles retaining most of their entrapped [3H]inulin after 50 h. These findings demonstrate that polymeric C25idPC liposomes exhibit high resistance to the destructive actions of plasma components, such as high-density lipoproteins (HDLs). Polymeric C25idPC liposomes may have an application in drug delivery systems.
    [Abstract] [Full Text] [Related] [New Search]