These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Replacement of pseudouridine in transfer RNA by 5-fluorouridine does not affect the ability to stimulate the synthesis of guanosine 5'-triphosphate 3'-diphosphate. Author: Chinali G, Horowitz J, Ofengand J. Journal: Biochemistry; 1978 Jul 11; 17(14):2755-60. PubMed ID: 356873. Abstract: The requirement for ribothymidine and pseudouridine in the TpsiCG loop of tRNA for its activity in the ribosome and tRNA-stimulated synthesis of guanosine 5'-triphosphate 3'-diphosphate (pppGpp) by stringent factor has been tested by the use of a purified tRNAPhe (883 pmol of phenylalanine incorporated/A260 unit) in which 92% of the pseudouridine, 98% of the ribothymidine, 98% of the dihydrouridine, and 88% of the uridines were substituted by 5-fluorouridine. This tRNA was quantitatively as active as control tRNA in inducing pppGpp synthesis. With loose-couple ribosomes, the concentration of tRNA needed to give half-maximal reaction was 0.07 micrometer for both normal and fluorouridine-substituted tRNA, with vacant tight-couple ribosomes it was 0.05 micrometer, and with tight couples carrying poly(Phe)-tRNA at the P site the value was 0.02 micrometer. These results show that at the level of intact tRNA there is no special requirement for modified bases in the TpsiCG loop of tRNA in the synthesis of pppGpp.[Abstract] [Full Text] [Related] [New Search]